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Synopsis 
By a pertubation technique adapted to the actual properties of gases and solids 

(and possibly also of liquids) we have established in previous papers that under suit- 
able conditions a quantum many-body system approaches statistical equilibrium as 
far as those physical quantities are concerned which are diagonal in the unperturbed 
representation. This result is now extended to non-diagonal quantities of a type broad 
enough to include all observables of actual interest. A general discussion of the resulting 
ergodic theorem is given, and its implications for classical statistics are briefly analyzed. 
The paper ends with a discussion of a recent article by I n g r a h a m  on the application 
of our methods to the case of a very small perturbation. The main arguments of I n- 
g r a h a m  are shown to be in error, and the inconsistencies he derives from them are 
thereby disproved. 

1. Introduction. The  approach  of a q u a n t u m  m a n y - b o d y  sys tem to 
stat is t ical  equi l ibr ium has been s tudied  in two previous  papers  1), to  be 
.referred to  he rea f te r  as S and  S', on the  basis of a separa t ion  of the  hamfl-  
ton ian  H' in to  a main  t e rm  H describing non- in terac t ing  plane wave  ex- 
c i ta t ions (like phonons  or Bloch electrons in solids, free part icles in gases) 
and  a pe r tu rba t i on  I V  represent ing the i r  mu tu a l  interact ion.  Using as basic 
represen ta t ion  the  eigenstates l a >  of H ,  each of which describes a set of 
plane wave  excitat ions,  we founded  our  t r e a t m e n t  on the  recognit ion t h a t  
the  m a t r i x  elements  to  be calculated according to  pe r tu rba t i on  t h e o r y  
exhibi t  r emarkab le  diagonal  singularities, i.e. singularit ies of the  fo rm 
~ ( a -  ~'). A sys temat ic  analysis of these singularit ies made  i t  possible to  
s t u d y  the  t ime evolut ion of cer ta in  physical  quant i t ies  A under  the  as- 
sumpt ion  of incoherent  phases for  the  ampl i tudes  c(~) of the  init ial  s ta te  9o 
of the  sys tem *) 

~o = f t~>d~c(~). (1.1) 

Under  proper  condit ions i t  could be established t h a t  in the course of t ime 
the  expec ta t ion  value of A, which is (we pu t  h = 1) 

<A>t = <9o]U-~AUt]9o>, Ut = e x p [ - - i ( H  + IV)t], (1.2) 

*) A detailed definition of our notation is found in S'. 

-- 268 -- 
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tends to the equilibrium value <A>eq calculated on the basis of micro- 
canonical ensemble theory. This was established for operators A diag6nal in 
the [~>-representation, in the case of very small perturbation in S and for 
finite ~V, i.e. to general order in the dimensionless parameter 4, in S'. 

Our present aim is to extend the general order t reatment  of S' to a wide 
class of non-diagonal operators B **). This class is composed of the non- 
diagonal operators B given by a convergent series, each term of which is a 
product of creation and destruction operators for individual plane wave 
excitations. We assume the number of creation and destruction operators 
in each term of the series to be finite and independent of the large number N 
of particles in the system. In contrast to the diagonal operators A, the class 
of operators B just defined is broad enough to contain all quantities of 
practical interest. Since we will again be able to establish that  the ex- 
pectation value 

(B>~ = <90l U-tBUtlgo) (1,3)  

tends to the microcanonical equilibrium value (B),q we will have esta- 
blished, for all practical purposes, the ergodic behaviour of our system, using 
only the properties of the hamiltonian postulated in S' (sections 2 and 7) and 
the incoherent phase assumption for the initial state (1.1). 

The rather broad scope of this result makes it desirable to discuss its 
significance, also in relation to classical statistics. Whereas the derivation 
of our main result 

(B>t--> (B)eq for t -+  4- oo (1.4) 

is presented in the next section, section 3 will be devoted to this general 
discussion. Section 2 will make free use of the formal technique developed 
and applied in S'. Although the author is fully aware of the complication of 
this technique, he believes that  the scope of the results may  justify at least 
partially the involved nature of the mathematical methods. Section 3 gives a 
nontechnical discussion which can be largely followed without knowledge of 
the detailed formalism of section 2 and S'. Section 4 presents a refutation of a 
critical discussion of S recently published by Ingraham. 

2. Approach to equilibrium/or non-diagonal operators. For any operator B 
of the type described above and for any set of diagonal operators A 1, ..., A n 
the matrix element 

(~[ VA 1VA 9.V...A vBA v+l V...A nVIo~'> (2. l) 

can have a ~(~ -- £)-singularity for the same reasons and with the  same 
properties as was the case for the matrix elements (o~[VA1V...AnVh~') 

**) As in S and S' the adjectives diagonal and non-diagonal will always refer to the I~-repre- 
sentation. 
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considered in S' (see S', section 2). The discussion of this singularity requires 
tha t  (2.t) be writ ten out as a sum over intermediate states ~.  In addition to 
having one V replaced by B this sum may  differ from the sum (S'. 2.6) *) by 
the fact tha t  additional intermediate states may  have to be introduced in 
between various factors of a single term of B. This would for example be the 
case if B = V1V2, V1 and V2 being individual terms in the expansion of V 
in products  of creation and destruction operators. In  this particular case one 
would obviously insert an additional intermediate state between V1 and Vs. 
All considerations presented in S' (section 2) can be repeated for this slightly 
more general case, however, and we can define in addition the concept of 
B-irreducible diagonal part. I t  is the diagonal part, i.e. the ~(~ -- ~')-singular 
part,  of (2.1) which is obtained when in the calculation of (2.1) one leaves 
out the diagonal  par t  of each subproduct  of the following type 

VAjV. . .A~V,( I  < ] ' < k < v o r v +  1 < i < k  < n ) ,  ] 
VAjV...A~BAv+IV...A~V, (1 __% ] ~ v < k _%< n, k --  ] ' < n - - l ,  I (2.2) 
VAjV...A~B, (1 ~ i <- v), BAv+IV...AkV, (v + 1 < k < n). 

We denote by {VA1V...A~BAv+IV...AnV)Ba the diagonal operator defined 
by the B-irreducible diagonal part  of (2.1). This concept may  differ from the 
irreducible diagonal par t  defined in S' because of the possible occurrence of 
additional intermediate states inside B (these states are allowed to become 
equal to each other, to other intermediate states, to ~ or to ~', and the 
corresponding subproducts, in contrast to the subproducts  (2.2), may  there- 
fore contribute their diagonal part). The new concept can be extended in an 
t)bvious way to products of the type 

BA1V.. .AnV, VA1.. .VAnB. (2.3) 

Its importance will appear presently. 
In  analogy to our analysis in S', which made essential use of the quant i ty  

Xu,(acd) defined by (S'.4.14), we must  consider the quant i ty  Yu,(c,) defined 
by 

{RzBRv}al~x> ----- I~>Yu'(~) (2.4) 

where Rt is the resolvent (S'. 4.1). Reduction of diagonal parts, using (S'.4.4) 
and our definition of B-irreducible diagonal part, readily gives 

{RlBRv}a = {RzBu,Rv}a (2.5) 
with 

Bu'  = {(1 -- 2VD~ + ~zVDyD~...)B(1 -- 2DvV + 2zDvVDvV...)}Ba (2.6) 

Hence, using (S'.4.14), 
, 

Yu' (a ) '=  f Bu,(a')da'Xw(a'o~) (2.7) 

where Bu,(od) is the eigenvalue of the diagonal operator Bw for the state a'. 

*) This symbol refers to Eq. (2.6) of S'  
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In analogy to (S'.4.13) we have 

U_~BU, = --  (2~)-~fr dl f~ dl' exp[i(l --  l')t]RlBRv (2.8) 

where the contour ? in the complex plane encircles an interval of the real 
axis sufficiently large to include the whole energy spectrum of the system 
and is described counterclockwise. Calculating the expectation value of (2.8) 
for the initial state 90, and using the  incoherent phase assumption for the 
amplitudes c(~) of ~00 one obtains 

<B>, = -- (2~)-9 fv dl fv dl' exp[/ ( / - -  l')t]Yw(o~)do~[c(o~)[2. (2.9) 

The long time limit of this quanti ty is found by repeating for Yw the dis- 
cussion carried our for X w  in section 6 of S'. No new difficulty occurs in this 
discussion because the quanti ty  Bw(od) by virtue of its definition remains 
finite and has only finite discontinuities for l and l' crossing the real axis. 
According to (2.7) the pseudopoles of YE+~,E-Z therefore coincide with those 
of X~+z,E-~. In analogy with (S'.6.18) one finds for the limit of (2.9) as 
t -+  -¢- oo 

<B>+oo ---- ~- l  f ~ .  dE flimo<,l_.o{~y~:,,7.E~_ln(a)}do~lc(a)[2" (2.10) 

We go back to (2.7) and remember that  Bw remains finite when l and l' 
approach the real axis. This gives 

lim ~1 YE'~:*n,E:~,I(°~) = f B~:,o,E+,o(a')da' lim ~/XE~:,n,E±*n(a'a)- (2.11) 

The limit on the righthand side has been calculated in section 7 of S', with 
the result (see (S'.7.9) and (S'.7.17) and the third equation thereafter) 

~-1 lim ~XE~n,~,n(~'~) = AB(~')AE(~)[fAE(~")da"]-k (2.12) 

We obtain by substitution 

<B>+oo = f ~ .  <B>EpEdE. (2.13) 

p~dE, defined by (S'.7.22), is the probability that  the total energy H + A V  be 
included between E and E + dE for the system in its initial state 90, under 
the incoherent phase assumption. The quanti ty <B>E is defined by 

<B>~ = [f  Az(od')dod']-l f BE~:,o,~+~o(o:')dodA~(od). (2.14) 

As will now be shown, it is equal to the microcanonical average of B on 
the energy shell H + AV = E and its value is independent of the double sign 
appearing in the definition. 

The microcanonical average of B is 

(2. 

Q~ being the projection operator on the energy shell H + 2V = E. One has 

Q~ = ~(H + ;tV -- E) = (2~i)-1 lim0<~0(RE+,~ -- Rn-,~). 
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But the resolvent verifies 

a relation which enables us to write 

Sp (BQ~) = ~-1 lim ~Sp (R~'-,-,~BRB~,7) = ~-1 f do~ lim ~ / Y ~ , B ~  (~). 

Here we have calculated the trace in the [a>-representation. The limit 
under the integral sign has been found in (2.11) and (2.12). I t  gives 

Sp(BQE) = f B~.,o,E.,o(od)dodAB(od). (2.16) 

If one now remembers that  Sp(QE) is fAE(od')dod' as remarked in S', one 
reaches the announced identity of (2.14) and (2.15) ~[or either value of the 
double sign appearing in the former expression. Returning to (2.13) we see 
that  the long time limit of <B>t agrees with the equilibrium value 

<B>eq = f <B>~,pEdE (2.17) 

of the quantity B as deduced from microcanonical ensemble theory. The 
ergodic behaviour of our system is thereby established for all observable 
quantities B of the type described in section 1 and for initial states with 
incoherent phases. I t  may be noted that  the main difference between the 
derivation just given and the treatment of diagonal quantities A in S and S' 
lies in the replacement of A by the diagonal operator Bw. 

3. Discussion. We have been able to establish that  under specified 
tonditions an isolated many-body system approaches microcanonical 
equilibrium. This has been achieved in the quantum description and we 
have made essential use of very special properties of the system in this 
description. In the first place, our analysis is entirely based on the existence 
of a special orthonormal set of states ~, composed of plane wave excitations. 
In this special representation the total hamiltonian is assumed to split into 
a diagonal part H and an off-diagonal part ;tV, and matrix elements of the 
form (2.1) are supposed to exhibit diagonal singularities with very definite 
properties. Secondly, we establish the approach to microcanonical equi- 
librium in a slightly unusual way. What we do is to study physical quantities 
represented by operators 0 with definite properties in the a-representation, 
and establish that  their expectation value <0>, tends in the course of time 
toward the equilibrium average value <0>e~ calculated from microcanonical 
theory. Finally our analysis follows the time evolution of the system for 
t -+ 2_. co beginning with an initial state 90 = f [~>d~c(~). We show that  
<O>t sphts into two terms, one depending on {he Ic(~)[~ only, and the second 
depending on the relative phases of c(~) for different £s. We simply leave 
out the phase-dependent term on the ground that  it will vanish for all times 
of practical interest if the initial amplitudes c(~) have incoherent phases. 
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Our result (0>t-+ <0)ea is established for the ptmse-independent part of 
(0)~. This result, being truly non-trivial and involving quite subtle pro'perties 
of the diagonal singularities mentioned above, seems to us in itself to give 
additional support to the soundness of the incoherent phase assumption. 

Obviously the systems we study are quite special, we use a special repre- 
sentation in expressing their properties and we discuss the approach to 
equilibrium for special operators 0. All these special features, however, are 
realized in the most common physical examples of ergodic systems, solids, 
gases and liquids (although for the latter the large size of 2V may make our 
treatment more doubtful). We feel therefore confident that  despite its 
apparent lack of generality our method is quite well adapted to the difficult 
problem of establishing ergodicity for realistic systems. In fact it is only by 
complete exploitation of the special conditions assumed that  we have been 
able to study our system in so much greater detail than is the case in the 
conventional investigations of the ergodic problem *) and to actually carry 
out a true proof of ergodic behaviour. 

Although quantum-mechanical in nature, our analysis applies also to the 
physical situations one usually calls classical, i.e. when the values of all 
observable quantities of interest depend on Planck's constant only through 
negligibly small corrections. For such situations it is important to translate 
our results into the language of classical theory. The main point in this 
translation is that  the state of the system at any time, although a single 
quantum state 9t = U~90, must be described classically by an ensemble of 
points in 6N-dimensional phase space (N being the number of particles). 
This cannot be otherwise, because the quantum-mechanical wave function 
corresponding to a single point in classical phase space is a very special type 
of wave packet and cannot possess the incoherent phases we require 9~ to 
have for t = 0 in our analysis **). This correspondence between single 
quantum states and classical ensembles leads to certain consequences which 
we now want to describe. 

According to our theory, for sufficiently large times t the expectation 
value <0)~ of a physical quanti ty 0 becomes equal to the equilibrium value 
<O>eq. This holds equally well for the quantity 09', 

<02>t = <0~'>eq for large t. 

In general, of course, <02>,~ and <0>,q 2 are different, so that  for large t the 
quantities <09>, and <0>, z will be both constant in time and have different 
values, a fact which makes it quite clear that  the classical analogue to the 

*) The unsatisfactory nature of V o n  N e u m a n n ' s  approach ~) to the quantum ergodic problem 
has now been clearly revealed s). I t  stems from the fact that V o n  N e u m a n n ' s  form of ergodie 
property actually imposes no restriction at all on the dynamical system. 

**) Starting from a different standpoint 4) V a n  K a m p e n  has been led some time ago to take the 
same view concerning the relation between classical and quantum statistics 5). 
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single quantum state ~0t of our system hks to be an ensemble. If now measure- 
ments of 0 are made on one and the same system a t  various times, the 
measured values qt will show a time dependence even for large t and, in 
classical situations (as defined above), the time averages of qt and (q~)2 must 
be equal to (0 ) t  and <09)t respectively, because the measuring process then 
cannot  affect the observable properties of the system. 

In  our theory, a measurement of 0 at time t must be described in the 
conventional quantum-mechanical fashion as giving rise to a reduction of 
the state vector 9t to another vector W(. This interpretation holds always, 
even in classical situations. For the latter case we can translate it by  saying 
tha t  the measurement gives rise to a reduction of the classical ensembe 
associated •with 9t to the smaller ensemble associated with 9(.  Although 
there is nothing wrong with this description, it differs in a non-trivial way  
from the picture conventionally adopted for a classical many-body system, 
in which at every instant t the system is regarded as being in one single point 
of 6N-dimensional phase space. If our theory is valid, a gas, liquid or solid 
in thermal equilibrium can never be said to be in one single point o] its classical 
phase space, even at high temperatures where all measurable quantum e[[ects 
are numerically negligible. I t  is in a single quantum state, the classical analogue 
of which is an ensemble. 

I t  should be stressed that  this unorthodox view cannot lead to any 
observable discrepancy with the conventional picture of a classical system. 
Let  us verify for example in our quantum description that  for a classical 
situation (as defined above) a measurement carried out at time t does not 
~affect the result of observations at later times t' = t + , .  Let  the quant i ty  0 
be measured at time t, and the quant i ty  O' at time t'. Assuming for sim- 
plicity 0 to have discrete eigenvalue On, all we have to establish is the 
identi ty 

<~0tl U_,O' U~O[pt> = Y~n On<gt[PnU-~O' U, Pnlgt> (3.1) 

where the Pn's are the projection operators verifying 0 ---- ~ n  OnPn. The 
righthand side of (3.1) includes the reduction of the state vector due to the 
first measurement, the lefthand side neglects it. Since Pn z -~ Pn the differ- 
ence between the two is 

Z,~ O,~<9,i[Pn, U-,O'U,]P,~Igt>. 

The commutator  being proportional to ~, this difference is indeed negligible 
in a classical situation. 

4. Re]utation o/ Ingraham:s criticism. I n ' a  recent paper s) I n g r a h a m  
has presented a severely critical discussion of our derivation ill S of the 
master equation describing the approach to equilibrium in the case of a 
very  small perturbation (limiting case ~l-+ 0, t -+  oo, 22t finite). In fact, if 
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this discussion were correct, it would imply complete invalidity of the 
contents of S, S' and the present paper. I n g r a h a m ' s  analysis, hov~ever, is 
based on a few patent ly  wrong assertions and arguments. If these assertions 
and arguments are replaced by  their corrected versions, the whole criticism 
of I n g r a h a m  becomes groundless and his considerations reduce to those 
of S and lead to the same conclusions. We would like to devote the last 
section of the present paper to a refutation of I n g r a h a m ' s  criticism, to 
which end it will be sufficient to indicate which basic arguments of this 
author  are incorrect. We can concentrate on section 3 of Ingraham's paper, 
which contains the actual discussion of our work. 

The first argument of I n g r a h a m  is developed on pp. 107 to 111 of his 
paper. I t  tends to show that our method of calculation violates the unitari ty 
of the operator of motion 

U(t) = exp[ - - i (H + AV)t]. 

The essential step is that  unitari ty of U(t) would imply In (3.20) *), which 
itself entails In (3.22), i.e. the vanishing of all transition rates. The central 
error is In (3.20). In deriving this equation, I n g r a h  am tacitly assumes that 
for ~ -~ 0, t -+ co, Azt finite, the limit of a product of operators (in the case 
a t  hand Ug.*U~) is equal to the product of the limits. This assumption is 
incorrect. Explicit calculation of the limit of the product gives an additional 
term in the righthand side of In (3.20), removing the inconsistency. Inci- 
dentally, while "deriving" In (3.20), Ingraham states that  our use of a well 
known asymptotic formula, In (3.16), would result from a choice. This is 
patent ly  wrong, because In (3. ! 6) is a mathematical identity for ](¢) continu- 
ously differentiable and vanishing at least as fast as I~l v, v < 0 for ~-~ co. 
No other formula would be correct, and no choice can therefore be made. 

The second criticism of Ingraham is that  ambiguities exist in our calcu- 
lations, because in products containing 3 or more factors V several pre- 
scriptions could be followed in replacing sub-products V A V  by their 
diagonal parts:  various choices could be made for these subproducts leading 
to different results for the total expression (see pp. 119. and 113 of I n g r a -  
h a m ' s  paper). Ingraham has not understood that  all choices have to be 
made, and that  in the limit ;t -+ 0, t -+ co, ;t2t finite, the total expression is 
the sum of the contributions of all possible choices. Among the latter only a 
few give non-vanishing contributions in the limiting case considered; all 

t h e s e  have been calculated in S, ensuring the correctness of our results in 
the weak coupling limit. 

Misled by  the errors just mentioned, I n g r a h a m  concludes to the in- 
validity of the fundamental property on which our work is based, to know 
the occurrence of diagonal singularities, In (3. l) in his paper. His mis- 
understanding of this property becomes quite clear when he states it to be 

*) By this abbreviation we mean Eq. (3.20) of I n g r a h a m ' s  paper. 
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equivalent to the property In (3.30), /vhere no summation is carried out 
on the intermediate state ql. The summation is absolutely essential for the 
occurrence of the diagonal singularity. Consequently the operator A in 
In (3. I) must have eigenvalues A (E"cd') -~ A"  varying smoothly with the 
parameters E" ,  ~", and In (3.30) is incorrect. For the same reason, the 
master equation established in S concerns the probability density to find 
our large system in unperturbed states, i.e. the probability averaged over 
a very large number of neighboring states. This is a coarse-grained proba- 
bility distribution. Therefore I n g r a h a m ' s  statement that  we "want  to 
obtain irreversible effects while retaining the maximum information 
permitted by  statistical mechanics" (p. 101), according to his introduction 
the very motivation of his critical study, is incorrect. Concerning the alter- 
native diagonal property In (3.33) proposed by I n g r a h a m ,  it will be 
sufficient to say that  it does not hold for actual systems, as is easily verified 
on the example of the electron-phonon system described in the appendix 
of S'. 

Having thus concluded to the invalidity of I n g r a h a m ' s  criticism, we 
may  finally remark that  this author seems to be quite confused concerning 
the order in which the various limiting processes N--> o% ~t--> 0, t--> oo 
must be considered for obtaining the region of validity of a master or tran- 
sport equation. The number of particles N must go to infinity first, ~t and t 
being finite. When this hmiting process, which is necessary e.g. to eliminate 
surface and shape-dependent effects, is completed, one can consider the 
hmiting case ~t --> 0, t --> oo, ~tat finite. 0ue  then obtains the master equation 
as derived in S. One can treat also, however~ the case of finite ~t and t, as 
was done in S' and the present paper. 
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